Image from Google Jackets

An introduction to mixed-signal IC test and measurement.

By: Contributor(s): Material type: TextSeries: The Oxford series in electrical and computer engineeringPublication details: New York : Oxford University Press, 2012.Edition: 2nd ed. / Gordon Roberts, Friedrich Taenzler, Mark BurnsDescription: xxv, 836 p. : ill. ; 24 cmISBN:
  • 9780199796212 (hbk. : alk. paper)
Subject(s): DDC classification:
  • 621.3815 23
LOC classification:
  • TK7874 .B825 2012
Other classification:
  • TEC008010 | TEC008020
Contents:
Machine generated contents note: -- Table of Contents -- Preface -- CHAPTER 1. OVERVIEW OF MIXED-SIGNAL TESTING 1 -- 1.1 MIXED-SIGNAL CIRCUITS 1 -- 1.1.1 Analog, Digital, or Mixed-Signal? 1 -- 1.1.2 Common Types of Analog and Mixed-Signal Circuits 2 -- 1.1.3 Applications of Mixed-Signal Circuits 3 -- 1.2 WHY TEST MIXED-SIGNAL DEVICES? 5 -- 1.2.1 The CMOS Fabrication Process 5 -- 1.2.2 Real-World Circuits 6 -- 1.2.3 What Is a Test Engineer? 8 -- 1.3 POST-SILICON PRODUCTION FLOW 9 -- 1.3.1 Test and Packaging 9 -- 1.3.2 Characterization versus Production Testing 10 -- 1.4 TEST AND DIAGNOSTIC EQUIPMENT 10 -- 1.4.1 Automated Test Equipment 10 -- 1.4.2 Wafer Probers 12 -- 1.4.3 Handlers 12 -- 1.4.4 E-Beam Probers 13 -- 1.4.5 Focused Ion Beam Equipment 13 -- 1.4.6 Forced-Temperature Systems 13 -- 1.5 NEW PRODUCT DEVELOPMENT 13 -- 1.5.1 Concurrent Engineering 13 -- 1.6 MIXED-SIGNAL TESTING CHALLENGES 15 -- 1.6.1 Time to Market 15 -- 1.6.2 Accuracy, Repeatability, and Correlation 15 -- 1.6.3 Electromechanical Fixturing Challenges 15 -- 1.6.4 Economics of Production Testing 16 -- CHAPTER 2. TESTER HARDWARE 19 -- 2.1 MIXED-SIGNAL TESTER OVERVIEW 19 -- 2.1.1 General-Purpose Testers versus Focused Bench Equipment 19 -- 2.1.2 Generic Tester Architecture 19 -- 2.2 DC RESOURCES 20 -- 2.2.1 General-Purpose Multimeters 20 -- 2.2.2 General-Purpose Voltage/Current Sources 23 -- 2.2.3 Precision Voltage References and User Supplies 24 -- 2.2.4 Calibration Source 24 -- 2.2.5 Relay Matrices 24 -- 2.2.6 Relay Control Lines 25 -- 2.3 DIGITAL SUBSYSTEM 26 -- 2.3.1 Digital Vectors 26 -- 2.3.2 Digital Signals 26 -- 2.3.3 Source Memory 27 -- 2.3.4 Capture Memory 27 -- 2.3.5 Pin Card Electronics 27 -- 2.3.6 Timing and Formatting Electronics 29 -- 2.4 AC SOURCE AND MEASUREMENT 32 -- 2.4.1 AC Continuous Wave Source and AC Meter 32 -- 2.4.2 Arbitrary Waveform Generators 32 -- 2.4.3 Waveform Digitizers 33 -- 2.4.4 Clocking and Synchronization 34 -- 2.5 TIME MEASUREMENT SYSTEM 35 -- 2.5.1 Time Measurements 35 -- 2.5.2 Time Measurement Interconnects 35 -- 2.6 RF-SUBSYSTEM 36 -- 2.6.1 Source Path 36 -- 2.6.2 Measurement Path 37 -- 2.7 COMPUTING HARDWARE 37 -- 2.7.1 User Computer 37 -- 2.7.2 Tester Computer 38 -- 2.7.3 Array Processors and Distributed Digital Signal Processors 38 -- 2.7.4 Network Connectivity 39 -- 2.8 SUMMARY 39 -- CHAPTER 3. DC AND PARAMETRIC MEASUREMENTS 41 -- 3.1 CONTINUITY 41 -- 3.1.1 Purpose of Continuity Testing 41 -- 3.1.2 Continuity Test Technique 41 -- 3.1.3 Serial versus Parallel Continuity Testing 44 -- 3.2 LEAKAGE CURRENTS 46 -- 3.2.1 Purpose of Leakage Testing 46 -- 3.2.2 Leakage Test Technique 46 -- 3.2.3 Serial versus Parallel Leakage Testing 46 -- 3.3 POWER SUPPLY CURRENTS 47 -- 3.3.1 Importance of Supply Current Tests 47 -- 3.3.2 Test Techniques 47 -- 3.4 DC REFERENCES AND REGULATORS 48 -- 3.4.1 Voltage Regulators 48 -- 3.4.2 Voltage References 50 -- 3.4.3 Trimmable References 50 -- 3.5 IMPEDANCE MEASUREMENTS 51 -- 3.5.1 Input Impedance 51 -- 3.5.2 Output Impedance 54 -- 3.5.3 Differential Impedance Measurements 54 -- 3.6 DC OFFSET MEASUREMENTS 55 -- 3.6.1 VMID and Analog Ground 55 -- 3.6.2 DC Transfer Characteristics (Gain and Offset) 56 -- 3.6.3 Output Offset Voltage (VO,OS) 56 -- 3.6.4 Single-Ended, Differential, and Common-Mode Offsets 58 -- 3.6.5 Input Offset Voltage (VIN,OS) 60 -- 3.7 DC GAIN MEASUREMENTS 60 -- 3.7.1 Closed-Loop Gain 60 -- 3.7.2 Open-Loop Gain 63 -- 3.8 DC POWER SUPPLY REJECTION RATIO 66 -- 3.8.1 DC Power Supply Sensitivity 66 -- 3.8.2 DC Power Supply Rejection Ratio 67 -- 3.9 DC COMMON-MODE REJECTION RATIO 68 -- 3.9.1 CMRR of Op Amps 68 -- 3.9.2 CMRR of Differential Gain Stages 70 -- 3.10 COMPARATOR DC TESTS 72 -- 3.10.1 Input Offset Voltage 72 -- 3.10.2 Threshold Voltage 72 -- 3.10.3 Hysteresis 73 -- 3.11 VOLTAGE SEARCH TECHNIQUES 74 -- 3.11.1 Binary Searches versus Step Searches 74 -- 3.11.2 Linear Searches 75 -- 3.12 DC TESTS FOR DIGITAL CIRCUITS 78 -- 3.12.1 IIH/IIL 78 -- 3.12.2 VIH/VIL 78 -- 3.12.3 VOH/VOL 79 -- 3.12.4 IOH/IOL 79 -- 3.12.5 IOSH and IOSL Short Circuit Current 79 -- 3.13 SUMMARY 79 -- CHAPTER 4. DATA ANALYSIS AND PROBABILITY THEORY 83 -- 4.1 DATA VISUALIZATION TOOLS 83 -- 4.1.1 Datalogs (Data Lists) 83 -- 4.1.2 Lot Summaries 84 -- 4.1.3 Wafer Maps 86 -- 4.1.4 Shmoo Plots 87 -- 4.1.5 Histograms 90 -- 4.2 STATISTICAL ANALYSIS 90 -- 4.2.1 Mean (Average) and Standard Deviation (Variance) 90 -- 4.2.2 Probabilities and Probability Density Functions 93 -- 4.2.3 The Standard Gaussian Cumulative Distribution Function ?(z) 96 -- 4.2.4 Verifying Gaussian Behavior: The Kurtosis and -- Normal Probability Plot 100 -- 4.3 NON-GAUSSIAN DISTRIBUTIONS FOUND IN MIXED-SIGNAL TEST 104 -- 4.3.1 The Uniform Probability Distribution 104 -- 4.3.2 The Sinusoidal Probability Distribution 106 -- 4.3.3 The Binomial Probability Distribution 109 -- 4.4 MODELING THE STRUCTURE OF RANDOMNESS 111 -- 4.4.1 Modeling A Gaussian Mixture Using The -- Expectation-Maximization Algorithm 113 -- 4.4.2 Probabilities Associated With A Gaussian Mixture Model 118 -- 4.5 SUMS AND DIFFERENCES OF RANDOM VARIABLES 120 -- 4.5.1 The Central Limit Theorem 124 -- 4.6 SUMMARY 125 -- CHAPTER 5 YIELD, MEASUREMENT ACCURACY AND -- TEST TIME 131 -- 5.1 YIELD 131 -- 5.2 MEASUREMENT TERMINOLOGY 133 -- 5.2.1 Accuracy and Precision 133 -- 5.2.2 Systematic Or Bias Errors 134 -- 5.2.3 Random Errors 134 -- 5.2.4 Resolution (Quantization Error) 134 -- 5.2.5 Repeatability 135 -- 5.2.6 Stability 136 -- 5.2.7 Correlation 136 -- 5.2.8 Reproducibility 138 -- 5.3 A MATHEMATICAL LOOK AT REPEATABILITY, BIAS AND ACCURACY 138 -- 5.4 CALIBRATIONS AND CHECKERS 145 -- 5.4.1 Traceability to Standards 146 -- 5.4.2 Hardware Calibration 146 -- 5.4.3 Software Calibration 147 -- 5.4.4 System Calibrations and Checkers 148 -- 5.4.5 Focused Instrument Calibrations 149 -- 5.4.6 Focused DIB Circuit Calibrations 153 -- 5.5 TESTER SPECIFICATIONS 155 -- 5.6 REDUCING MEASUREMENT ERROR WITH GREATER -- MEASUREMENT TIME 157 -- 5.6.1 Analog Filtering 157 -- 5.6.2 Averaging 159 -- 5.7 GUARDBANDS 160 -- 5.8 EFFECTS OF MEASUREMENT VARIABILITY ON TEST YIELD 165 -- 5.9 EFFECTS OF REPRODUCIBILTY AND PROCESS VARIATION -- ON YIELD 167 -- 5.10 STATISTICAL PROCESS CONTROL 171 -- 5.10.1 Goals of SPC 171 -- 5.10.2 Six-Sigma Quality 173 -- 5.10.3 Process Capability, Cp, and Cpk 173 -- 5.10.4 Gauge Repeatability and Reproducibility 175 -- 5.11 SUMMARY 175 -- CHAPTER 6 DAC TESTING 181 -- 6.1 BASICS OF DATA CONVERTERS 182 -- 6.1.1 Principles of DAC and ADC Conversion 182 -- 6.1.2 Data Formats 186 -- 6.1.3 Comparison of DACs and ADCs 190 -- 6.1.4 DAC Failure Mechanisms 191 -- 6.2 BASIC DC TESTS 192 -- 6.2.1 Code-Specific Parameters 192 -- 6.2.2 Full-Scale Range 192 -- 6.2.3 DC Gain, Gain Error, Offset, and Offset Error 192 -- 6.2.4 LSB Step Size 195 -- 6.2.5 DC PSS 195 -- 6.3 TRANSFER CURVE TESTS 196 -- 6.3.1 Absolute Error 196 -- 6.3.2 Monotonicity 198 -- 6.3.3 Differential Nonlinearity 198 -- 6.3.4 Integral Nonlinearity 201 -- 6.3.5 Partial Transfer Curves 204 -- 6.3.6 Major Carrier Testing 204 -- 6.3.7 Other Selected-Code Techniques 207 -- 6.4 DYNAMIC DAC TESTS 209 -- 6.4.1 Conversion Time (Settling Time) 209 -- 6.4.2 Overshoot and Undershoot 210 -- 6.4.3 Rise Time and Fall Time 210 -- 6.4.4 DAC-to-DAC Skew 211 -- 6.4.5 Glitch Energy (Glitch Impulse) 212 -- 6.4.6 Clock and Data Feedthrough 212 -- 6.5 TESTS FOR COMMON DAC APPLICATIONS 213 -- 6.5.1 DC References 213 -- 6.5.2 Audio Reconstruction 214 -- 6.5.3 Data Modulation 214 -- 6.5.4 Video Signal Generators 215 -- 6.6 SUMMARY 215 -- CHAPTER 7 ADC TESTING 221 -- 7.1 ADC TESTING VERSUS DAC TESTING 221 -- 7.1.1 Comparison of DACs and ADCs 221 -- 7.1.2 Statistical Behavior of ADCs 221 -- 7.2 ADC CODE EDGE MEASUREMENTS 226 -- 7.2.1 Edge Code Testing versus Center Code Testing 226 -- 7.2.2 Step Search and Binary Search Methods 227 -- 7.2.3 Servo Method 228 -- 7.2.4 Linear Ramp Histogram Method 229 -- 7.2.5 Conversion from Histograms to Code Edge Transfer Curves 231 -- 7.2.6 Accuracy Limitations of Histogram Testing 232 -- 7.2.7 Rising Ramps versus Falling Ramps 235 -- 7.2.8 Sinusoidal Histogram Method 236 -- 7.3 DC TESTS AND TRANSFER CURVE TESTS 244 -- 7.3.1 DC Gain and Offset 244 -- 7.3.2 INL and DNL 245 -- 7.3.3 Monotonicity and Missing Codes 248 -- 7.4 DYNAMIC ADC TESTS 249 -- 7.4.1 Conversion Time, Recovery Time, and Sampling Frequency 249 -- 7.4.2 Aperture Jitter 252 -- 7.4.3 Sparkling 252 -- 7.5 TESTS FOR COMMON ADC APPLICATIONS 253 -- 7.5.1 DC Measurements 253 -- 7.5.2 Audio Digitization 253 -- 7.5.3 Data Transmission 253 -- 7.5.4 Video Digitization 254 -- 7.6 SUMMARY 254 -- CHAPTER 8 SAMPLING THEORY 259 -- 8.1 ANALOG MEASUREMENTS USING DSP 259 -- 8.1.1 Traditional versus DSP-Based Testing of AC Parameters 259 -- 8.2 SAMPLING AND RECONSTRUCTION 260 -- 8.2.1 Use of Sampling and Reconstruction in Mixed-Signal Testing 260 -- 8.2.2 Sampling: Continuous-Time and Discrete-Time Representation 260 -- 8.2.3 Reconstruction 264 -- 8.2.4 The Sampling Theorem and Aliasing 269 -- 8.2.5 Quantization Effects 271 -- 8.2.6 Sampling Jitter 276 -- 8.3 REPETITIVE SAMPLE SETS 283 -- 8.3.1 Finite and Infinite Sample Sets 283 -- 8.3.2 Coherent Signals and Noncoherent Signals 284 -- 8.3.3 Peak-to-RMS Control in Coherent Multitones 286 -- 8.3.4 Spectral Bin Selection 287 -- 8.4 SYNCHRONIZATION OF SAMPLING SYSTEMS 292 -- 8.4.1 Simultaneous Testing of Multiple Sampling Systems 292 -- 8.4.2 ATE Clock Sources 294 -- 8.5 SUMMARY 296 -- CHAPTER 9 DSP-BASED TESTING 299 -- 9.1 ADVANTAGES OF DSP-BASED TESTING 299 -- 9.1.1Reduced Test Time 299 -- 9.1.2 Separation of Signal Components 299 -- 9.1.3 Advanced Signal Manipulations 300 -- 9.2 DIGITAL SIGNAL PROCESSING 300 -- 9.2.1 DSP and Array Processing 300 -- 9.2.2 Fourier Analysis of Periodic Signals 301 -- 9.2.3 The Trigonometric Fourier Series 301 -- 9.2.4 The Discrete-Time Fourier Series 305 -- 9.2.5 Complete Frequency Spectrum 314 -- 9.2.6 Time and Frequency Denormalization 318 --
Summary: "With the proliferation of complex semiconductor devices containing digital, analog, mixed-signal and radio-frequency circuits, the economics of test has come to the forefront and today's engineer needs to be fluent in all four circuit types. Having access to a book that covers these topics will help the evolving test engineer immensely and will be an invaluable resource. In addition, the second edition includes lengthy discussion on RF circuits, high-speed I/Os and probabilistic reasoning. Appropriate for the junior/senior university level, this textbook includes hundreds of examples, exercises and problems"--Summary: "This contains the title page, copyright page, table of contents, first chapter, last chapter, and appendices"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Barcode
Book Meru University Open Shelves TK7874 .B8 2012 (Browse shelf(Opens below)) Available 18-31689
Total holds: 0

Burns' name appears first on the previous edition.

Includes bibliographical references and index.

Machine generated contents note: -- Table of Contents -- Preface -- CHAPTER 1. OVERVIEW OF MIXED-SIGNAL TESTING 1 -- 1.1 MIXED-SIGNAL CIRCUITS 1 -- 1.1.1 Analog, Digital, or Mixed-Signal? 1 -- 1.1.2 Common Types of Analog and Mixed-Signal Circuits 2 -- 1.1.3 Applications of Mixed-Signal Circuits 3 -- 1.2 WHY TEST MIXED-SIGNAL DEVICES? 5 -- 1.2.1 The CMOS Fabrication Process 5 -- 1.2.2 Real-World Circuits 6 -- 1.2.3 What Is a Test Engineer? 8 -- 1.3 POST-SILICON PRODUCTION FLOW 9 -- 1.3.1 Test and Packaging 9 -- 1.3.2 Characterization versus Production Testing 10 -- 1.4 TEST AND DIAGNOSTIC EQUIPMENT 10 -- 1.4.1 Automated Test Equipment 10 -- 1.4.2 Wafer Probers 12 -- 1.4.3 Handlers 12 -- 1.4.4 E-Beam Probers 13 -- 1.4.5 Focused Ion Beam Equipment 13 -- 1.4.6 Forced-Temperature Systems 13 -- 1.5 NEW PRODUCT DEVELOPMENT 13 -- 1.5.1 Concurrent Engineering 13 -- 1.6 MIXED-SIGNAL TESTING CHALLENGES 15 -- 1.6.1 Time to Market 15 -- 1.6.2 Accuracy, Repeatability, and Correlation 15 -- 1.6.3 Electromechanical Fixturing Challenges 15 -- 1.6.4 Economics of Production Testing 16 -- CHAPTER 2. TESTER HARDWARE 19 -- 2.1 MIXED-SIGNAL TESTER OVERVIEW 19 -- 2.1.1 General-Purpose Testers versus Focused Bench Equipment 19 -- 2.1.2 Generic Tester Architecture 19 -- 2.2 DC RESOURCES 20 -- 2.2.1 General-Purpose Multimeters 20 -- 2.2.2 General-Purpose Voltage/Current Sources 23 -- 2.2.3 Precision Voltage References and User Supplies 24 -- 2.2.4 Calibration Source 24 -- 2.2.5 Relay Matrices 24 -- 2.2.6 Relay Control Lines 25 -- 2.3 DIGITAL SUBSYSTEM 26 -- 2.3.1 Digital Vectors 26 -- 2.3.2 Digital Signals 26 -- 2.3.3 Source Memory 27 -- 2.3.4 Capture Memory 27 -- 2.3.5 Pin Card Electronics 27 -- 2.3.6 Timing and Formatting Electronics 29 -- 2.4 AC SOURCE AND MEASUREMENT 32 -- 2.4.1 AC Continuous Wave Source and AC Meter 32 -- 2.4.2 Arbitrary Waveform Generators 32 -- 2.4.3 Waveform Digitizers 33 -- 2.4.4 Clocking and Synchronization 34 -- 2.5 TIME MEASUREMENT SYSTEM 35 -- 2.5.1 Time Measurements 35 -- 2.5.2 Time Measurement Interconnects 35 -- 2.6 RF-SUBSYSTEM 36 -- 2.6.1 Source Path 36 -- 2.6.2 Measurement Path 37 -- 2.7 COMPUTING HARDWARE 37 -- 2.7.1 User Computer 37 -- 2.7.2 Tester Computer 38 -- 2.7.3 Array Processors and Distributed Digital Signal Processors 38 -- 2.7.4 Network Connectivity 39 -- 2.8 SUMMARY 39 -- CHAPTER 3. DC AND PARAMETRIC MEASUREMENTS 41 -- 3.1 CONTINUITY 41 -- 3.1.1 Purpose of Continuity Testing 41 -- 3.1.2 Continuity Test Technique 41 -- 3.1.3 Serial versus Parallel Continuity Testing 44 -- 3.2 LEAKAGE CURRENTS 46 -- 3.2.1 Purpose of Leakage Testing 46 -- 3.2.2 Leakage Test Technique 46 -- 3.2.3 Serial versus Parallel Leakage Testing 46 -- 3.3 POWER SUPPLY CURRENTS 47 -- 3.3.1 Importance of Supply Current Tests 47 -- 3.3.2 Test Techniques 47 -- 3.4 DC REFERENCES AND REGULATORS 48 -- 3.4.1 Voltage Regulators 48 -- 3.4.2 Voltage References 50 -- 3.4.3 Trimmable References 50 -- 3.5 IMPEDANCE MEASUREMENTS 51 -- 3.5.1 Input Impedance 51 -- 3.5.2 Output Impedance 54 -- 3.5.3 Differential Impedance Measurements 54 -- 3.6 DC OFFSET MEASUREMENTS 55 -- 3.6.1 VMID and Analog Ground 55 -- 3.6.2 DC Transfer Characteristics (Gain and Offset) 56 -- 3.6.3 Output Offset Voltage (VO,OS) 56 -- 3.6.4 Single-Ended, Differential, and Common-Mode Offsets 58 -- 3.6.5 Input Offset Voltage (VIN,OS) 60 -- 3.7 DC GAIN MEASUREMENTS 60 -- 3.7.1 Closed-Loop Gain 60 -- 3.7.2 Open-Loop Gain 63 -- 3.8 DC POWER SUPPLY REJECTION RATIO 66 -- 3.8.1 DC Power Supply Sensitivity 66 -- 3.8.2 DC Power Supply Rejection Ratio 67 -- 3.9 DC COMMON-MODE REJECTION RATIO 68 -- 3.9.1 CMRR of Op Amps 68 -- 3.9.2 CMRR of Differential Gain Stages 70 -- 3.10 COMPARATOR DC TESTS 72 -- 3.10.1 Input Offset Voltage 72 -- 3.10.2 Threshold Voltage 72 -- 3.10.3 Hysteresis 73 -- 3.11 VOLTAGE SEARCH TECHNIQUES 74 -- 3.11.1 Binary Searches versus Step Searches 74 -- 3.11.2 Linear Searches 75 -- 3.12 DC TESTS FOR DIGITAL CIRCUITS 78 -- 3.12.1 IIH/IIL 78 -- 3.12.2 VIH/VIL 78 -- 3.12.3 VOH/VOL 79 -- 3.12.4 IOH/IOL 79 -- 3.12.5 IOSH and IOSL Short Circuit Current 79 -- 3.13 SUMMARY 79 -- CHAPTER 4. DATA ANALYSIS AND PROBABILITY THEORY 83 -- 4.1 DATA VISUALIZATION TOOLS 83 -- 4.1.1 Datalogs (Data Lists) 83 -- 4.1.2 Lot Summaries 84 -- 4.1.3 Wafer Maps 86 -- 4.1.4 Shmoo Plots 87 -- 4.1.5 Histograms 90 -- 4.2 STATISTICAL ANALYSIS 90 -- 4.2.1 Mean (Average) and Standard Deviation (Variance) 90 -- 4.2.2 Probabilities and Probability Density Functions 93 -- 4.2.3 The Standard Gaussian Cumulative Distribution Function ?(z) 96 -- 4.2.4 Verifying Gaussian Behavior: The Kurtosis and -- Normal Probability Plot 100 -- 4.3 NON-GAUSSIAN DISTRIBUTIONS FOUND IN MIXED-SIGNAL TEST 104 -- 4.3.1 The Uniform Probability Distribution 104 -- 4.3.2 The Sinusoidal Probability Distribution 106 -- 4.3.3 The Binomial Probability Distribution 109 -- 4.4 MODELING THE STRUCTURE OF RANDOMNESS 111 -- 4.4.1 Modeling A Gaussian Mixture Using The -- Expectation-Maximization Algorithm 113 -- 4.4.2 Probabilities Associated With A Gaussian Mixture Model 118 -- 4.5 SUMS AND DIFFERENCES OF RANDOM VARIABLES 120 -- 4.5.1 The Central Limit Theorem 124 -- 4.6 SUMMARY 125 -- CHAPTER 5 YIELD, MEASUREMENT ACCURACY AND -- TEST TIME 131 -- 5.1 YIELD 131 -- 5.2 MEASUREMENT TERMINOLOGY 133 -- 5.2.1 Accuracy and Precision 133 -- 5.2.2 Systematic Or Bias Errors 134 -- 5.2.3 Random Errors 134 -- 5.2.4 Resolution (Quantization Error) 134 -- 5.2.5 Repeatability 135 -- 5.2.6 Stability 136 -- 5.2.7 Correlation 136 -- 5.2.8 Reproducibility 138 -- 5.3 A MATHEMATICAL LOOK AT REPEATABILITY, BIAS AND ACCURACY 138 -- 5.4 CALIBRATIONS AND CHECKERS 145 -- 5.4.1 Traceability to Standards 146 -- 5.4.2 Hardware Calibration 146 -- 5.4.3 Software Calibration 147 -- 5.4.4 System Calibrations and Checkers 148 -- 5.4.5 Focused Instrument Calibrations 149 -- 5.4.6 Focused DIB Circuit Calibrations 153 -- 5.5 TESTER SPECIFICATIONS 155 -- 5.6 REDUCING MEASUREMENT ERROR WITH GREATER -- MEASUREMENT TIME 157 -- 5.6.1 Analog Filtering 157 -- 5.6.2 Averaging 159 -- 5.7 GUARDBANDS 160 -- 5.8 EFFECTS OF MEASUREMENT VARIABILITY ON TEST YIELD 165 -- 5.9 EFFECTS OF REPRODUCIBILTY AND PROCESS VARIATION -- ON YIELD 167 -- 5.10 STATISTICAL PROCESS CONTROL 171 -- 5.10.1 Goals of SPC 171 -- 5.10.2 Six-Sigma Quality 173 -- 5.10.3 Process Capability, Cp, and Cpk 173 -- 5.10.4 Gauge Repeatability and Reproducibility 175 -- 5.11 SUMMARY 175 -- CHAPTER 6 DAC TESTING 181 -- 6.1 BASICS OF DATA CONVERTERS 182 -- 6.1.1 Principles of DAC and ADC Conversion 182 -- 6.1.2 Data Formats 186 -- 6.1.3 Comparison of DACs and ADCs 190 -- 6.1.4 DAC Failure Mechanisms 191 -- 6.2 BASIC DC TESTS 192 -- 6.2.1 Code-Specific Parameters 192 -- 6.2.2 Full-Scale Range 192 -- 6.2.3 DC Gain, Gain Error, Offset, and Offset Error 192 -- 6.2.4 LSB Step Size 195 -- 6.2.5 DC PSS 195 -- 6.3 TRANSFER CURVE TESTS 196 -- 6.3.1 Absolute Error 196 -- 6.3.2 Monotonicity 198 -- 6.3.3 Differential Nonlinearity 198 -- 6.3.4 Integral Nonlinearity 201 -- 6.3.5 Partial Transfer Curves 204 -- 6.3.6 Major Carrier Testing 204 -- 6.3.7 Other Selected-Code Techniques 207 -- 6.4 DYNAMIC DAC TESTS 209 -- 6.4.1 Conversion Time (Settling Time) 209 -- 6.4.2 Overshoot and Undershoot 210 -- 6.4.3 Rise Time and Fall Time 210 -- 6.4.4 DAC-to-DAC Skew 211 -- 6.4.5 Glitch Energy (Glitch Impulse) 212 -- 6.4.6 Clock and Data Feedthrough 212 -- 6.5 TESTS FOR COMMON DAC APPLICATIONS 213 -- 6.5.1 DC References 213 -- 6.5.2 Audio Reconstruction 214 -- 6.5.3 Data Modulation 214 -- 6.5.4 Video Signal Generators 215 -- 6.6 SUMMARY 215 -- CHAPTER 7 ADC TESTING 221 -- 7.1 ADC TESTING VERSUS DAC TESTING 221 -- 7.1.1 Comparison of DACs and ADCs 221 -- 7.1.2 Statistical Behavior of ADCs 221 -- 7.2 ADC CODE EDGE MEASUREMENTS 226 -- 7.2.1 Edge Code Testing versus Center Code Testing 226 -- 7.2.2 Step Search and Binary Search Methods 227 -- 7.2.3 Servo Method 228 -- 7.2.4 Linear Ramp Histogram Method 229 -- 7.2.5 Conversion from Histograms to Code Edge Transfer Curves 231 -- 7.2.6 Accuracy Limitations of Histogram Testing 232 -- 7.2.7 Rising Ramps versus Falling Ramps 235 -- 7.2.8 Sinusoidal Histogram Method 236 -- 7.3 DC TESTS AND TRANSFER CURVE TESTS 244 -- 7.3.1 DC Gain and Offset 244 -- 7.3.2 INL and DNL 245 -- 7.3.3 Monotonicity and Missing Codes 248 -- 7.4 DYNAMIC ADC TESTS 249 -- 7.4.1 Conversion Time, Recovery Time, and Sampling Frequency 249 -- 7.4.2 Aperture Jitter 252 -- 7.4.3 Sparkling 252 -- 7.5 TESTS FOR COMMON ADC APPLICATIONS 253 -- 7.5.1 DC Measurements 253 -- 7.5.2 Audio Digitization 253 -- 7.5.3 Data Transmission 253 -- 7.5.4 Video Digitization 254 -- 7.6 SUMMARY 254 -- CHAPTER 8 SAMPLING THEORY 259 -- 8.1 ANALOG MEASUREMENTS USING DSP 259 -- 8.1.1 Traditional versus DSP-Based Testing of AC Parameters 259 -- 8.2 SAMPLING AND RECONSTRUCTION 260 -- 8.2.1 Use of Sampling and Reconstruction in Mixed-Signal Testing 260 -- 8.2.2 Sampling: Continuous-Time and Discrete-Time Representation 260 -- 8.2.3 Reconstruction 264 -- 8.2.4 The Sampling Theorem and Aliasing 269 -- 8.2.5 Quantization Effects 271 -- 8.2.6 Sampling Jitter 276 -- 8.3 REPETITIVE SAMPLE SETS 283 -- 8.3.1 Finite and Infinite Sample Sets 283 -- 8.3.2 Coherent Signals and Noncoherent Signals 284 -- 8.3.3 Peak-to-RMS Control in Coherent Multitones 286 -- 8.3.4 Spectral Bin Selection 287 -- 8.4 SYNCHRONIZATION OF SAMPLING SYSTEMS 292 -- 8.4.1 Simultaneous Testing of Multiple Sampling Systems 292 -- 8.4.2 ATE Clock Sources 294 -- 8.5 SUMMARY 296 -- CHAPTER 9 DSP-BASED TESTING 299 -- 9.1 ADVANTAGES OF DSP-BASED TESTING 299 -- 9.1.1Reduced Test Time 299 -- 9.1.2 Separation of Signal Components 299 -- 9.1.3 Advanced Signal Manipulations 300 -- 9.2 DIGITAL SIGNAL PROCESSING 300 -- 9.2.1 DSP and Array Processing 300 -- 9.2.2 Fourier Analysis of Periodic Signals 301 -- 9.2.3 The Trigonometric Fourier Series 301 -- 9.2.4 The Discrete-Time Fourier Series 305 -- 9.2.5 Complete Frequency Spectrum 314 -- 9.2.6 Time and Frequency Denormalization 318 --

"With the proliferation of complex semiconductor devices containing digital, analog, mixed-signal and radio-frequency circuits, the economics of test has come to the forefront and today's engineer needs to be fluent in all four circuit types. Having access to a book that covers these topics will help the evolving test engineer immensely and will be an invaluable resource. In addition, the second edition includes lengthy discussion on RF circuits, high-speed I/Os and probabilistic reasoning. Appropriate for the junior/senior university level, this textbook includes hundreds of examples, exercises and problems"--

"This contains the title page, copyright page, table of contents, first chapter, last chapter, and appendices"--

There are no comments on this title.

to post a comment.
Share


Meru University of Science and Technology | P.O. Box 972-60200 Meru. | Tel 020 2092048 Fax 0208027449 | Email: library@must.ac.ke