Image from Google Jackets

Fluid flow over a moving flat surface with temperature dependent viscosity/ Kirimi Erick Mutwiri.

By: Material type: TextPublication details: Meru: Kirimi Erick Mutwiri, 2018.Description: xiv,131pISBN:
LOC classification:
  • QA901.K5 2018
Summary: Fluid flow over a moving semi-infinite flat surface with temperature dependent viscosity has been investigated in this study. A steady two-dimensional laminar boundary layer flow of incompressible, Newtonian fluid past a flat plate has been considered. The surface is considered to move with uniform velocity Uw in the same direction to the fluid with velocity U in the free stream region. The surface is kept at constant uniform temperature Tw higher than the fluid temperature T at the free stream region such that the temperature difference causes variation of viscosity within the boundary layer region. This flow is considered to be caused by constant pressure gradient and the movement of the surface. The study aims at determining the effect of varying various flow parameters on velocity and temperature profiles.These parameters are pressure gradient,Reynolds number, Eckert number, variable viscosity parameter , Prandtl number and surface velocity. The partial differential equations governing the flow have been non-dimensionalised and then solved using finite difference numerical method. The results obtained have been presented graphically and in form of tables. It has been observed that an increase in pressure gradient, Reynolds number , variable viscosity parameter and surface velocity increase both primary and secondary velocity profiles whereas it decreases temperature profiles. Increase in Eckert number has been observed to increase temperature profiles whereas increase in Prandtl number was noted to decrease temperature profiles. These results are useful in paper and polymer production where hot filaments are cooled as they pass through a moving fluid.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Barcode
Thesis Meru University Short Loan QA901.K5 2018 (Browse shelf(Opens below)) Not for loan 17-29795
Total holds: 0

Includes Index and Appendix

Fluid flow over a moving semi-infinite flat surface with temperature dependent viscosity has been investigated in this study. A steady two-dimensional laminar boundary layer flow of incompressible, Newtonian fluid past a flat plate has been considered. The surface is considered to move with uniform velocity Uw in the same direction to the fluid with velocity U in the free stream region. The surface is kept at constant uniform temperature Tw higher than the fluid temperature T at the free stream region such that the temperature difference causes variation of viscosity within the boundary layer region. This flow is considered to be caused by constant pressure gradient and the movement of the surface. The study aims at determining the effect of varying various flow parameters on velocity and temperature profiles.These parameters are pressure gradient,Reynolds number, Eckert number, variable viscosity parameter , Prandtl number and surface velocity. The partial differential equations governing the flow have been non-dimensionalised and then solved using finite difference numerical method. The results obtained have been presented graphically and in form of tables. It has been observed that an increase in pressure gradient, Reynolds number , variable viscosity parameter and surface velocity increase both primary and secondary velocity profiles whereas it decreases temperature profiles. Increase in Eckert number has been observed to increase temperature profiles whereas increase in Prandtl number was noted to decrease temperature profiles. These results are useful in paper and polymer production where hot filaments are cooled as they pass through a moving fluid.

There are no comments on this title.

to post a comment.
Share


Meru University of Science and Technology | P.O. Box 972-60200 Meru. | Tel 020 2092048 Fax 0208027449 | Email: library@must.ac.ke